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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of quantum physics may be characterized by

1. a Hamiltonian H generating unitary evolution in

2. a state space H of wavefunctions.
e Some physical quantities. [Complexity for “physical” H, A, B, ...:]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]
The partition function Z(3) = tr(e ).  [Quadratic g. speedup]
Thermodyn. expectations tr(e ?7 A) /Z(3). [Quad. q. speedup]
Expectations (| Aly) for known states [¢)).  [Q. easy to within ¢]
Correlation functions (i|e!’t Ae=* 1t Bjp).  [Q. easy to within €]
Response to probes under experimental conditions.

[“virtual” experiment is q. easy]
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

¢ A model of quantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space H of wavefunctions.

e Example models.
A particle of mass m in one dimension.
‘H: Square integrable functions on R = (—oo, 00).

H=-1%+1vV. [..h=1]
Unitary evolution according to Schrédinger’s equation: %w = —iH1.

N particles in 3 dimensions.

‘H: Square integrable functions on R*".

H =Y, E;(kinetic) + v;(potential) + 3~ ,_,_, v I;.x(interaction)
Translation invariant 1-D lattice of spin—% systems.

Kktl) o Kokt 1 o (k1
H=53", H with B = Zu,v auﬂ,au( Vo Y
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

— 000000 ceeccccee
-B N
r€{-B,...,0,B%,...,B}.

>y Fa?la) (@|FT + V(z)|z) (2]
... Fis the Fourier transform.

Faithful realization in a finite number of qubits.
- |-B+r/N) — |r), r in binary.

Wavefunction: ¢(x), x € R.

Hamiltonian: —%% + V(z)

Implementation of evolution.

-K=F3, o) (|FT, V=3, V(z)l)(z|.
Trotterization: e~ Ht = (e~ Kt/Te=Vt/T\T 1 O(1/T)

Information extraction: State preparation and measurement.

3
TOC




Faithful Evolution
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e Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H=0"406" 4069402 ® +06,25,.° + 0,550
Each term in H is readily simulatable.

) . y
e~z T A z-rotation, =—@&—

w_ W .
e Conjugate of an z-rotation by cnots. m

—10y Oz t .
But the terms do not all commute. Combine commuting terms:

(A) (B) (© (A) _ (B) (A) _ (O (B) _ (O
Hint =0, +0, +0., Hcpl =0y Oy  + 0y 0y + 0y 0z .
) . (A . (B) () Lo .
e~ tHimt = g=i0z te—ios te=ios 't gimilarly for e ~*Hen?,

Trotterize: e~ e~ iHimfe~Hefy | N 4 O(|H2L)

: : t ; t ; t 3
e—th — eizHmf/WeleUPlWelei"fW N+O(|H‘3#)
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The Virtual Quantum Physics Lab

Quantum computers can efficiently simulate an
experimental procedure on a specified quantum system.

e Requirements:
v/ Qubit representation of the quantum system.
y/ Evolution of its internal Hamiltonian.
v/ Simulation of coupling to experimental probes.
- Preparation of a physically meaningful initial state.

- Implementation of measurements with noise no worse
than the actual experiment would have.
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Simulatability of Physical Systems

Physical universality thesis for quantum computers.
Given: Physical system S.

Physical Hamiltonian H > 0 for S.

Physically meaningful state |¢)) of S of av. energy F.
It is possible to represent S, H and |¢)) on qubits,
and evolve H for time ¢ using quantum gates,
with resources polynomial in

E, t and the approximation error.

Then:

Evidence: No counterexample so far. ...

Typical representation relationships:
S can be approximated by N degrees of freedom.
Hamiltonian: Sum of pairwise interactions between degrees of freedom.
The energy is linear (maybe quadratic) in N.
A degree of freedom can be approximated by a “small” qubit register.
Simulating an arbitrary interaction on a pair of small registers is “efficient”.
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Measuring Unitary Expectations

Quantum system S, preparable in state [¢)).

Unitary U®, with “controlled” implementations.
Problem: Measure (¢|U|y) to within e.

Solution with one qubit.

Given:

s 10) ([WX+UY) + [1)( — [py+U )

Prob(b, = 1)=(y|1))
+{W|U)+(@|UT|)

S
+pUT )
S rrem— — =2+ 2Re((0]0]))
[k 5 o))+ ULy

2 (loHa) o)

Get Re(y|Uy) from Prob(b, = 1) £ €/2.
To obtain Im(|U|), replace U by iU.
Requires O(1/¢?) repetitions.
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Measuring Unitary Expectations

Quantum system S, preparable in state [¢)).
Unitary U®, with “controlled” implementations.
Problem: Measure (y|U[y) to within e.

Solution with amplitude estimation.
Assume that Z,; = “selective —1 of |)” is implementable.

e Given:

e (U7, U.Z,, 2

Obtain | (y|Up) | from +arcsin( | ([U[) | )/7)+0.
Infer (1|U]y) by doing the same with

U’ = U®lo)o| & [1)1] and [¢) = [} [+),.
Requires O(1/¢) coherent, controlled applications of U.

.,._ +arcsin( | (W|U[w) | )/x)£0
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Measuring Correlation Functions

e Given: Quantum system S, preparable in state |¢)).
Operators A and B, implementable as needed.

Problem: Measure (i|e?t Be =11t Ajyp) to within e.
If A and B are unitary, let U = ¢/#*Be~H! A and measure
(¥|Ulx) to within e.
A and B are Hermitian. Let B(t) = e/t Be~iH!
1. Obtain § = 37, o, (—1)*F(gple"D BN (=0 iAs)y) 4 6,
2. S = A4(s2(WBHAR) + O((|A| + | B)3s?) ) % 6.
3.Sett = O0(e/(|A| + |B])?), 6 = O(es?).

Requires O((|A| + | B|)?/€3) uses of (-1 iB(1)se(~1)"ids,
Note network simplification:

4 ej:iAsH e—thH e:tiBsH eiH? h St 4 e:tiAsH e—thH ej:iBsH ciHt h
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Measuring Hermitian Expectations

Quantum system S, preparable in state [¢)).
Hermitian A® with e~%4 implementable.
Problem: Measure (1)|A[y) to within e.

e Given:

Solution using unitary expectation measurements.
1. For small t, e7#4* = 1 — it A + O(|A]*t?).
(Yl ) = 1 —it(y|Alp) + O(|A]*t?)
2. Choose t such that O(] A|?t?) contributes at most te/2.
t = O(e/|AP?)
3. Measure (y|e~*y)) to within te/2.

Requires O(|A|?/€) uses of e~#4! with amp. estimation.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.
Problem: Measure the spectrum of H.

Spectrum of H: Multiset {\; }, of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
Spectral density with resolution ¢ and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e” %) /N £ § for

t=0,...,(M=2)A, (M-1)A.
Note: tr(e™"%)/N = (le~ Ht]) for [ip) = - 37 ky[k),.
2. Compute the discrete Fourier transform fof f.
fUA) = S, e AN

~

fooo= e faa)enn
Range: < > |H|. Resolution: -5 < e. SNR: 6 < 1/S.
Requires O(|H|S/¢) uses of e~ *Ht with t up to O(1/e).
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State preparation Problems

e Prepare the ground state of H?

... appears to be difficult in general.

e Prepare a thermodynamic state
with density matrix e=#H /tr(e=#H)?

...can simulate contact with a thermal bath, but efficiency?
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